Evolutionary algorithms and neural networks in hybrid systems

نویسنده

  • Thomas Villmann
چکیده

Lq wkh duhd ri Frpsxwdwlrqdo Lqwhooljhqfh vhyhudo dssurdfkhv duh hvwdeolvkhg iru vroylqj frpsoh{ frpsxwdwlrqdo wdvnv zklfk duh lqvsluhg e| qdwxuh1 Pdlq gluhfwlrqv duh duwl fldo qhxudo qhwzrunv/ hyroxwlrqdu| ru jhqhwlf dojrulwkpv/ Ix}}|0dssurdfkhv dqg rwkhu1 Wkh dssolfdwlrqv udqjh iurp foxvwhulqj/ sdwwhuq uhfrjqlwlrq/ rswlpl}dwlrq dqg rwkhu wr uhdvrqlqj/ gdwd plqlqj dqg nqrzohgjh glvfryhu|1 D odujh qxpehu ri vshfldol}hg dojrulwkpv zhuh ghyhorshg iru vshfl f wdvnv1 Krzhyhu/ riwhq wkh wdvnv uhtxluh wr frpelqh vhyhudo dssurdfkhv zklfk wkhq duh fdoohg k|eulg v|vwhpv1 Lq wklv sdshu zh zdqw sd| dwwhqwlrq wr vxfk v|vwhpv zklfk frpelqh hyroxwlrqdu|2jhqhwlf dojrulwkpv zlwk duwl fldo qhxudo qhwzrunv1 Wkh duwlfoh lv vwuxfwxuhg dv iroorzv= Lq vhf151 zh vkruwo| uhylhz wkh dfwxdo vwdwh lq ghyhorsphqw ri k|eulg v|vwhpv frpelqlqj qhxudo dqg hyroxwlrqdu| sdudgljpv1 Diwhu wklv/ lq vhf161/ zh irfxv rq k|eulg dssurdfkhv frpelqlqj vhoi0rujdql}lqj pdsv dqg hyroxwlrqdu| dojrulwkpv1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Prediction of Surface Roughness by Hybrid Artificial Neural Network and Evolutionary Algorithms in End Milling

Machining processes such as end milling are the main steps of production which have major effect on the quality and cost of products. Surface roughness is one of the considerable factors that production managers tend to implement in their decisions. In this study, an artificial neural network is proposed to minimize the surface roughness by tuning the conditions of machining process such as cut...

متن کامل

Functional Approximation Using Neuro-genetic Hybrid Systems

Artificial neural networks provide a methodology for solving many types of nonlinear problems that are difficult to solve using traditional techniques. Neurogenetic hybrid systems bring together the artificial neural networks benefits and the inherent advantages of evolutionary algorithms. A functional approximation method using neuro-genetic hybrid systems is proposed in this paper. Three evol...

متن کامل

Appraisal of the evolutionary-based methodologies in generation of artificial earthquake time histories

Through the last three decades different seismological and engineering approaches for the generation of artificial earthquakes have been proposed. Selection of an appropriate method for the generation of applicable artificial earthquake accelerograms (AEAs) has been a challenging subject in the time history analysis of the structures in the case of the absence of sufficient recorded accelerogra...

متن کامل

Novel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem

Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001